

NURSING

Accelerometer-Based Work Activity in Florida Agricultural Workers Jacqueline M. Mix, PhD, MPH¹, Lisa E. Elon, MS, MPH², Vicki Stover Hertzberg, PhD, FASA, P.Stat.¹,

Introduction

- Agricultural workers frequently perform intense labor in hot environmental conditions and have a risk of heat related-illness (HRI) that is 20 times greater than the general workforce population¹
- To date, there has been no quantification of the work intensity and patterns of work among Florida agricultural workers in the field setting

Methods

Study Design and Population

- The *Girasoles ("Sunflower")* study is a longitudinal study of agricultural workers in 5 Florida communities aimed to characterize physiologic response to working in hot conditions
- Workers were recruited during the 2015-2017 summer work seasons by trained *promotoras*
- Inclusion criteria: (1) age 18-54, (2) worked in U.S. agriculture for at least 1 month
- Exclusion criteria: (1) history of diabetes type I, (2) current pregnancy

Data Collection

- A total of 252 agricultural workers were monitored by wearing a highly validated Actigraph GT3X+ accelerometer positioned at the hip, which recorded acceleration counts on 3 individual planes of motion (vertical, antero-posterior, and medio-lateral) every 30 seconds
- Workers completed a baseline survey and were monitored for up to 3 workdays
- Baseline survey included sociodemographic variables, work characteristics, and usual agricultural activities performed
- Environmental conditions during the time of data collection (6am to 6pm) were derived from the Florida Automated Weather Network (FAWN) which records data every 15 minutes; a monitoring station was present in each agricultural community under study

Activity Variables

- <u>Vector magnitude (VM3)</u>: a composite activity count measure incorporating all three planes of motion
- <u>Time spent in moderate to vigorous activity (MV)</u>: calculated by summing the minutes reaching a VM3 count of $\geq 2690^2$
- <u>Usual work activities</u>: bending, walking, standing, cutting, twisting, lifting, sitting, kneeling, reaching, squatting

Statistical Analysis

- Demographic and work characteristics were summarized (Table 1)
- Average weather conditions were summarized (Table 2)
- Functional data analysis (FDA) was used to examine differences in VM3 over the work day by agricultural community using LOESS smoothing (Figure 1); differences in curves were tested with a point-wise and omnibus critical value using permuted values (Figure 2)
- Median minutes spent in MV was summarized over the workday and reported by sex (Figure 3)
- Usual work activities were summarized as the percentage of workers engaging in that activity (Figure 4)

Nell Hodgson Woodruff School of Nursing, Emory University¹, Rollins School of Public Health, Emory University² Levin College of Law, University of Florida³, Farmworker Association of Florida⁴

Results

Table 1. Demographic Characteristics									
Table 1: Demographic Characteristics									
	Pierson (n = 67)	Immokalee (n = 66)	Fellsmere (n = 26)	Арорка (n = 59)	Homestead (n = 34)				
Characteristic									
Age (years), mean SD	37 (7)	38 (8)	37 (9)	39 (9)	41 (11)				
Sex, n (%)									
Male	23 (34)	36 (55)	10 (38)	17 (29)	10 (29)				
Female	44 (66)	30 (45)	16 (62)	42 (71)	24 (71)				
Body mass index (kg/m2), mean (SD)	29 (4)	28 (4)	28 (6)	29 (5)	29 (6)				
Nationality									
Mexico	64 (96)	19 (29)	22 (85)	41 (70)	23 (68)				
Central America	0 (0)	21 (32)	4 (15)	15 (25)	10 (29)				
Caribbean	0 (0)	26 (39)	0 (0)	3 (5)	0 (0)				
United States	3 (4)	0 (0)	0 (0)	0 (0)	1 (3)				
Education (years), mean (SD)	6 (3)	6 (4)	7 (3)	7 (3)	7 (4)				
Years worked in Agriculture, mean (SD)	15 (6)	9 (8)	11 (7)	12 (8)	14 (10)				

Table 2. Environmental Conditions from FAWN

Weather Parameter	Pierson (2015) 5/25-7/1	Immokalee (2016) 8/30-10/12	Fellsmere (2017) 5/9-5/24	Apopka* (2015) 7/7-7/22	Homestead (2017) 7/31-8/19
Ambient temperature (°F)	85	82	83	84	85
Maximum temperature (°F)	93	88	88	91	90
Average relative humidity (%)	69	82	68	74	76
				*2016 Apopka fi	eld collection: 6/6 – 6/30

Figure 1. Vector Magnitude Counts by Agricultural Community

Joan Flocks, JD³, Eugenia Economos⁴, Antonio Tovar-Aguilar, PhD⁴, Linda McCauley, PhD, RN¹

- Fernery work was associated with the highest work intensity, with both males and females spending approximately 60% of their workday in MV
- Fernery workers are generally paid by the piece, which may discourage workers from taking rest breaks
- Males and females work at similar intensities in all field sites, except ulletfor nurseries where females spend less time in MV
- Activity contributes to the risk of HRI in agricultural workers; research is underway to examine the relationship between work intensity, dehydration and core body temperature
- More studies are needed to determine how to modify work breaks lacksquarethat incorporate climatic conditions and work intensity

- . Centers for Disease Control and Prevention. Heat-related deaths among crop workers--United States, 1992--2006. MMWR Morb Mortal Wkly Rep. 2008;57(24):649-53. PubMed PMID: 18566563.
- 2. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411-6. doi: 10.1016/j.jsams.2011.04.003. PubMed PMID: 21616714.

La Asociación Campesina de Florida Asosiyasyon Travayè Latè nan Florid

References

Acknowledgements

This research is supported by CDC/ NIOSH (RO1-OH010657)